Skip to main content

Analog GreenPAKs

Hand

Upcoming event - Apr 28

5 Configurable Mixed-Signal /Op-Amp circuits to Inspire your next Design

Register

Advanced Analog Schemes

能耗低、小型化和功能onal integration are the main trends in modern consumer electronics. Analog GreenPAK products perfectly accomplish these requirements.

Embedded high performance analog blocks, such as operational amplifiers, can be configured and controlled by customer-defined logic functions to implement various Wake/Sleep scenarios as well as improve the accuracy. All macrocells are packed in one IC to achieve high integration level of common analog and digital components.

Analog GreenPAKs Are Ideal For:

Gas Sensor Analog Front-End

Analog Front-End for Bridge Sensors

Instrumentation Amplifier with Offset and Gain Trim

Tunable Analog Filters

Analog Front-End for Photo Diode

Triangle Wave Generator with Frequency Trim

Button Replacement Using Force-Sensitive Resistor Sensor

Thermal Protection with Trimmable Threshold

Other size/price critical analog circuits

Analog GreenPAKs Portfolio
Product
Description
雷竞技安卓下载

SLG47004

Configurable mixed-signal IC with operational amplifiers, digital rheostats, EEPROM and a wide set of analog and digital macrocells Sensor interfaces, programmable gain amplifiers, instrumentation amplifiers, portable and handheld electronics, industrial electronics, home appliances and IoT

SLG88103

Dual channel 375 nA rail-to-rail input/output CMOS operational amplifier Battery-powered devices, portable devices, wearable products, sensors, medical monitors, smoke detectors, active RFID readers, energy harvesters

SLG88104

Quad channel 375 nA rail-to-rail input/output CMOS operational amplifier Battery-powered devices, portable devices, wearable products, sensors, medical monitors, smoke detectors, active RFID readers, energy harvesters

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters
PN Special Feature GPIO Nominal VDD
(V)
ACMP DCMP/PWM Max. CNT/DLY Max. LUTs Max. DFF Pipe
Delay
Progr. DLY OSC Com. Interface Package Size (mm) Socket Documents
SLG46127
SLG46127MTR
2x P-FET 6 1.8 - 5.0 2 - 4 10 4 8-stage 1 RC OSC - 1.6 x 2.0 mm MSTQFN-16 (#1) Documentation
SLG46580 ASMLDO 9 2.5 - 5.0 4 - 5 16 9 16-stage 1 Conf. OSCLP OSC I²C 2.0 x 3.0 mm STQFN-20 (#3) Documentation
SLG46582 ASMLDO 9 2.5 - 5.0 4 - 5 16 9 16-stage 1 Conf. OSCLP OSC I²C 2.0 x 3.0 mm STQFN-20 (#3) Documentation
SLG46583 ASMLDO 9 2.5 - 5.0 4 - 5 16 9 16-stage 1 Conf. OSCLP OSC I²C 2.0 x 3.0 mm STQFN-20 (#3) Documentation
SLG46585 ASMLDODCDC 9 2.5 - 5.0 4 - 5 16 9 16-stage 1 Conf. OSCLP OSC I²C 3.0 x 3.0 mm MSTQFN-29 (#1) Documentation
SLG46533
SLG46533MTR
- 18 1.8 - 5.0 4 - 7 25 15 16-stage 1 Conf. OSCRing OSCCrystal OSC I²C 2.0 x 2.2 mm
2.0 x 3.0 mm
MSTQFN-22 (#1)STQFN-20 (#1) Documentation
SLG46538 ASMDual Supply 17 1.8 - 5.01.8 - VDD1 4 - 7 17 8 16-stage 1 Conf. OSCRC OSCCrystal OSC I²C 2.0 x 3.0 mm
2.0 x 2.2 mm
STQFN-20 (#2)MSTQFN-22 (#2) Documentation
SLG46538-A ASMDual Supply 17 1.8 - 5.01.8 - VDD1 4 - 7 17 8 16-stage 1 Conf. OSCRC OSCCrystal OSC I²C 3.5 x 3.5 mm TQFN-20 Documentation
SLG46537 ASM 18 1.8 - 5.0 4 - 7 17 8 16-stage 1 Conf. OSCRC OSCCrystal OSC I²C 2.0 x 3.0 mm
2.0 x 2.2 mm
STQFN-20 (#1)MSTQFN-22 (#1) Documentation
SLG46536 - 12 1.8 - 5.0 3 - 7 25 15 16-stage 1 Conf. OSCRing OSCCrystal OSC I²C 2.0 x 2.2 mm STQFN-14 (#2) Documentation
SLG46535 ASMDual Supply 11 1.8 - 5.01.8 - VDD1 3 - 7 17 8 16-stage 1 Conf. OSCRing OSCCrystal OSC I²C 2.0 x 2.2 mm STQFN-14 (#3) Documentation
SLG46534 ASM 12 1.8 - 5.0 3 - 7 17 8 16-stage 1 Conf. OSCRC OSCCrystal OSC I²C 2.0 x 2.2 mm STQFN-14 (#2) Documentation
SLG46170 - 12 1.8 - 5.0 - - 8 17 6 16-stage 1 RC OSC - 2.0 x 2.2 mm STQFN-14 (#2) Documentation
SLG46169 - 12 1.8 - 5.0 2 - 7 18 6 16-stage 1 RC OSC - 2.0 x 2.2 mm STQFN-14 (#2) Documentation
SLG46108 - 6 1.8 - 5.0 - - 4 10 4 8-stage 1 RC OSC - 1.0 x 1.2 mm STQFN-8 (#1) Documentation
SLG46121 Dual Supply 9 1.8 - 5.01.8 - VDD1 2 - 4 16 8 8-stage 1 RC OSC - 1.6 x 1.6 mm STQFN-12 (#2) Documentation
SLG46621 Dual Supply8-bit ADC 17 1.8 - 5.01.8 - VDD1 6 3/3 10 26 12 16-stage 2 2 LF OSCRing OSCRC OSC SPI 2.0 x 3.0 mm STQFN-20 (#2) Documentation
SLG46620 8-bit ADC 18 1.8 - 5.0 6 3/3 10 26 12 16-stage 2 2 LF OSCRing OSCRC OSC SPI 2.0 x 3.0 mm
6.5 x 6.4 mm
STQFN-20 (#1)TSSOP-20 (#1) Documentation
SLG46620-A 8-bit ADC 18 1.8 - 3.3 6 3/3 10 26 12 16-stage 2 2 LF OSCRing OSCRC OSC SPI 6.5 x 6.4 mm TSSOP-20 (#1) Documentation
SLG46117 1x P-FET 7 1.8 - 5.0 2 - 4 10 4 8-stage 1 RC OSC - 1.6 x 2.5 mm STQFN-14 (#1) Documentation
SLG46116 1x P-FET 7 1.8 - 5.0 2 - 4 10 4 8-stage 1 RC OSC - 1.6 x 2.5 mm STQFN-14 (#1) Documentation
SLG46140 8-bit ADC 12 1.8 - 5.0 2 3/3 4 16 6 16-stage 1 LF OSCRing OSCRC OSC SPI 1.6 x 2.0 mm STQFN-14 (#1) Documentation
SLG46120 - 10 1.8 - 5.0 2 - 4 16 8 8-stage 1 RC OSC - 1.6 x 1.6 mm
2.0 x 2.0 mm
STQFN-12 (#1) Documentation
SLG46110 - 8 1.8 - 5.0 2 - 4 10 4 8-stage 1 RC OSC - 1.6 x 1.6 mm STQFN-12 (#1) Documentation
SLG46722 - 18 1.8 - 5.0 - - 8 17 6 16-stage 1 RC OSC - 2.0 x 3.0 mm STQFN-20 (#1) Documentation
SLG46721 - 18 1.8 - 5.0 4 - 7 18 6 16-stage 1 RC OSC - 2.0 x 3.0 mm STQFN-20 (#1) Documentation
SLG46824 In-System ProgrammabilityDual Supply 17 2.5 - 5.01.8 - VDD1 2 - 8 19 17 16-stage 1 RC OSCLP OSCRing OSC I²C 2.0 x 3.0 mm
6.5 x 6.4 mm
STQFN-20 (#4)TSSOP-20 (#2) Documentation
SLG46826 In-System ProgrammabilityDual Supply 17 2.5 - 5.01.8 - VDD1 4 - 8 19 17 16-stage 1 RC OSCLP OSCRing OSC I²C 2.0 x 3.0 mm
6.5 x 6.4 mm
STQFN-20 (#4)TSSOP-20 (#2) Documentation
SLG46827-A In-System DebugDual Supply 17 2.5 - 5.01.8 - VDD1 4 - 8 19 17 16-stage 1 RC OSCLP OSCRing OSC I²C 6.5 x 6.4 mm TSSOP-20 (#2) Documentation
SLG46880 ASMDual Supply 28 2.5 - 5.02.5 - VDD1 4 - 5 12 5 16-stage 1 RC OSCLP OSCRing OSCCrystal OSC I²C 4.0 x 4.0 mm STQFN-32 (#1) Documentation
SLG46881 ASMDual Supply 28 2.5 - 5.01.0 - 1.8 4 - 5 12 5 16-stage 1 RC OSCLP OSCRing OSCCrystal OSC I²C 4.0 x 4.0 mm STQFN-32 (#1) Documentation
SLG46517 ASM2x P-FET 16 1.8 - 5.0 4 - 7 17 8 16-stage 1 RC OSCRing OSCCrystal OSC I²C 2.0 x 3.0 mm MSTQFN-28 (#1) Documentation
SLG46855 - 12 2.5 - 5.0 4 - 8 23 21 16-stage 1 RC OSCLP OSCRing OSC I²C 1.6 x 2.0 mm STQFN-14 (#1) Documentation
SLG46855-A - 12 2.5 - 5.0 4 - 8 23 21 16-stage 1 RC OSCLP OSCRing OSC I²C 3.0 x 3.0 mm FCQFN-14 (#1) Documentation
SLG46867 2x P-FET 10 2.5 - 5.0 4 - 8 23 21 16-stage 1 RC OSCLP OSCRing OSC I²C 1.6 x 3.0 mm MSTQFN-20 (#1) Documentation
SLG47105 Dual Supply4 Half- / 2 Full- bridgesI/V Regulation 84 x HV 2.5 - 5.03.3 - 12.0 2 0/2 5 17 15 16-stage 1 LP OSCRing OSC I²C 2.0 x 3.0 mm STQFN-20 (#5) Documentation
SLG47004 Op AmpDigital RheostatAnalog SwitchAuto TrimIn-System Programmability 8 2.5 - 5.0 3 0/0 7 20 18 16-stage 1 RC OSCLP OSCRing OSC I²C 3.0 x 3.0 mm STQFN-24 (#1) Documentation
SLG88103 Op Amp 0 1.8 - 5.0 0 0/0 0 0 0 - 0 - - 2.0 x 2.0 mm STDFN-10 Documentation
SLG88104 Op Amp 0 1.8 - 5.0 0 0/0 0 0 0 - 0 - - 2.0 x 3.5 mm STQFN-20 Documentation
SLG46811 92 x 8 bit pattern generator 10 2.5 - 5.0 1 (4) 0/0 6 18 17 4 x 8-bit Sh Reg 1 Ring OSC
LP OSC
I²C 1.6 x 1.6 mm STQFN-12 (#1) Documentation

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters
GreenPAK Designer
Name Date Version
GreenPAK Designer software for Windows, macOS or Linux(7.58 KB)
Datasheets
Name Date Version
SLG47004 Datasheet(12.99 MB) 10/03/2021 2.4
SLG88103V Datasheet(3.4 MB) 13/03/2017 1.01
SLG88104V Datasheet(3.4 MB) 13/03/2017 1.01
Brochures
Name Date Version
GreenPAK™ Brochure(3.4 MB) 01/01/2020 1.0
User guides and manuals
Name Date Version
GreenPAK Cookbook(9.21 MB) 01/12/2020 1.0

Stay connected

Get in touch with us directly through our worldwide sales offices, or contact one of our global distributors and representatives.

Inquiries Distributors and Representatives Register for newsletters
Back to results

2 months ago

SLG47105V ldle current

Posted bykoen@weijand.nl0 points 15 replies
0 upvotes

have a fresh naked chip on a testboard, nothing connected but VDD and I2C. emulated the chip using the I2C serial debuger board ext supply, and vcc current ends up to 32.6mA@3V after hitting the emulation button; after removing the I2C the current is still there. it does ot run through any pin.

I can monitor the sleep pin of HV drivers at an IO pin, and that is high, HV driver pins are highZ. the osc is also forced using the same net to power down. confirmed off/powered down.

all IO's are either 0 or high, no halfway levels. when the HV output is not in sleep but disabled, the output pins are 0.3V above the rail or gnd. most likely some leakage from the gate drive charge pump.

but where does the 32mA go ? is it possible to short some internals by improper programming code ? I'm i the beta tester here ? it is suply dependent, goed up when VDD goes up.

in my case the VDD and HVvdd are the same net.

help is appreciated...

2 months ago

koen@weijand.nl 0 points

whne I remove the HVVD1 and 2 from the VDD rail, and then emulate , the current is gone, also when I connect the HVVD1 and 2 to the VDD afterwards .

2 months ago

koen@weijand.nl 0 points

when HVVD2 adn VDD are disconnected during emulation transmit, the current stays low.

2 months ago

ssaravan

Hi ,

Thank you for reaching out and for the detailed examination of the 47105V chip. Could you let me know how the current was measured here?

Kind Regards

Shivani

2 months ago

koen@weijand.nl 0 points

a non programmed device seems un responsive, does it need to be programmed first to be able to emulate using the serieal debugger ? the dev board emulation does all sorts of "above rail" signaling, plus I2C. this is the command that the debuggers sebds ou, but no response form the 47105V. does the VDD2 need to be connected ?

Attachment Size
I2C1stcommand.pdf 72.67 KB

2 months ago

koen@weijand.nl 0 points

total current VDD + vdd2, measured by IT6412 precision source

2 months ago

koen@weijand.nl 0 points

the thermal pads are not connected for simplicity as the motor currents are < 100mA

2 months ago

koen@weijand.nl 0 points

developing the program on the dev board using the advanced dev platfrom had no problems.

2 months ago

koen@weijand.nl 0 points

我注意到另一件事就是有一个diode between VDD and VDD2 , so VDD2 is not allowed to be 0.6V lower than VDD. this is not propely reflected in the datasheet. if this 0.6V does trigger parasitic devices is not stated either.

2 months ago

ssaravan

Thank you for the feedback. Chip current consumption should be measured via GND. Could you please attach the design file, so I can take a closer look

Kind Regards

Shivani

2 months ago

koen@weijand.nl 0 points

encl the program, I can send the schematic privately

Attachment Size
stepdriver.zip 31.78 KB

2 months ago

koen@weijand.nl 0 points

on the dev board I supply 3V to the VDD2 nodes, and use the dev board 3V for VDD logic supply. UVLO on HV drive is disabled.

2 months ago

koen@weijand.nl 0 points

there are only 2 connections to the chip: GND and VDD, VDD2 is wired to VDD on the PCB. current is measured as indicated by the precision power supply (0.05% accuracy )

2 months ago

koen@weijand.nl 0 points

chip rev 0x1 DB HW-FW: 1.3.1-2.8

2 months ago

ssaravan

Thanks for the feedback. Could you first program the chip and then measure the current? An empty chip can sometimes behave unusually

2 months ago

koen@weijand.nl 0 points

a programmed chip does have the problem. It appears that I have connected two IO ports to the same voltage level as VDD , this is part of the intended design. the logic of the port is tristate or HI, so no conflict in a programmed state.

my guess is that the initiation of the chip is not properly done as it sees a conflict in the IO port halfway. that incomplete programming results in the high current state.